

Dosimetry for first-in-human PET studies The NIH experience

Paolo Zanotti Fregonara, M.D., Ph.D.

Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland

Main points

- Animal dosimetry is resource-intensive and poorly predicts human values
- Human dosimetry is expensive, and the tracer may not work
- The dose of a ¹¹C tracer is predictable and primarily based on the half-life of ¹¹C

Proposed solutions:

- Abandon animal dosimetry for both ¹⁸F and ¹¹C
- Postpone human dosimetry until the tracer is proven to work
- Abandon human ¹¹C dosimetry scans and use an average dose

Traditional NIH pathway for first-in-human studies

1) Perform dosimetry in monkeys (preferred animal model at the NIH)

2) Perform dosimetry in humans

3) Evaluate the validity of the new tracer (e.g., with brain studies)

Pathway for ¹¹C and ¹⁸F first-in-human studies

Eur J Nucl Med Mol Imaging (2012) 39:544–547 DOI 10.1007/s00259-011-2005-8 Eur J Nucl Med Mol Imaging (2013) 40:1781–1783 DOI 10.1007/s00259-013-2512-x

LETTER TO THE EDITOR

LETTER TO THE EDITOR

Suggested pathway to assess radiation safety of ¹¹C-labeled PET tracers for first-in-human studies

Suggested pathway to assess radiation safety of ¹⁸F-labeled PET tracers for first-in-human studies

Paolo Zanotti-Fregonara · Robert B. Innis

Paolo Zanotti-Fregonara · Adriaan A. Lammertsma · Robert B. Innis

- 1. Abandon animal dosimetry
- 2. Begin with whole-body scanning in a single human subject using a low activity
- 3. To determine whether the radioligand is worth pursuing, then do scans centered on the organ (e.g., brain)
- 4. If the radioligand looks promising, complete the human dosimetry study

Proposal to abandon ¹¹C dosimetry

HOT TOPICS

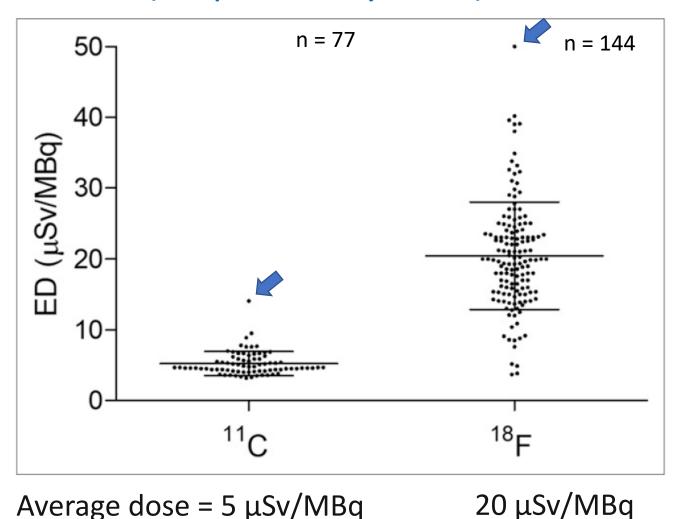
¹¹C Dosimetry Scans Should Be Abandoned

Paolo Zanotti-Fregonara¹, Adriaan A. Lammertsma², and Robert B. Innis¹

¹Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland; and ²Department of Radiology and Nuclear Medicine, Amsterdam UMC, VUmc, Amsterdam, The Netherlands

- 1. Abandon both animal and human dosimetry for ¹¹C tracers
- 2. Use an average Effective Dose (5 μ Sv/MBq)

Monkeys poorly predict human dosimetry


- Dosimetry from human and nonhuman primates is available for 16 ¹¹C tracers and 21 ¹⁸F tracers
- Effective dose
 - Monkey scans unpredictably under- or overestimated the human effective dose (mean absolute percentage difference of 31%)
- Organ dose
 - In only one third of the tracers was the target organ the same in both monkeys and humans
 - The dose poorly predicted the human dose (mean absolute difference of 42%)

Mice and piglets poorly predict human dosimetry

-the German experience

- Animals underestimate the dose to humans by up to 40%
- E.g., Effective Dose for [18F]Flubatine
 - 12.5 μSv/MBq in mice
 - 14.7 μSv/MBq in piglets
 - 23.4 μSv/MBq in humans

Dose values calculated in humans are similar among tracers (especially ¹¹C)

Variability can be largely explained by methodological choices

A faster voiding with a dynamic bladder model would reduce:

Effective dose of ¹¹C-flumazenil by 13% and of ¹⁸F-CP-18 by 61% Bladder dose of ¹¹C-flumazenil by 33% and of ¹⁸F-CP-18 by 74%

Laymon *Mol Imaging Biol*. 2012 Doss *J Nucl Med*. 2013

Human dosimetry is poorly reproducible

18 tracers for which the ED was reported by two different teams

• The average relative difference among these tracers was 42%

Only for 3 tracers the dose difference was smaller than 10%

¹¹C dosimetry has already been abandoned

-the Dutch experience

 University Hospital of Amsterdam abandoned both animal and human ¹¹C dosimetry for all tracers except those expected to enter routine clinical practice

Adopted NIH protocol for ¹⁸F tracers

Suggestions

Abandon animal dosimetry for both ¹⁸F and ¹¹C

Perform ¹⁸F human dosimetry after the tracer has been proven valid

• Abandon human ¹¹C dosimetry and use an average dose (5 μSv/MBq)